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INTRODUCTION

Derived from the Cannabis sativa plant, hemp 
fibers are a type of natural fiber. Cultivated legal-
ly in various countries, hemp finds usage across 
multiple sectors, including the production of 
paper, textiles, apparel, biodegradable plastics, 
construction materials, cosmetic items, health 
foods, and biofuels. The growth cycle of hemp, 
from seeding to full growth, spans roughly 12–16 
weeks. Its significance as a natural fiber in indus-
trial use is notable. Wang [1-3] highlights hemp’s 
robust tensile strength and its effective resistance 
in alkaline conditions, making it an excellent 
reinforcing agent. Additionally, the hemp clay 
composite, a blend of ground clay bricks and or-
ganic binders, is recognized as a sustainable, eco-
friendly material [4, 5].

Clay reinforced with hemp fiber presents 
numerous advantages, including its renewable 

nature and contribution to carbon sequestration 
[1, 6, 7]. This composite exhibits an impressive 
specific modulus, and understanding its proper-
ties is crucial for its effective application. These 
fiber-reinforced composites are categorized as 
hierarchical materials, featuring two levels of 
structure: the micro-scale and the macro-scale. 
The micro-scaale focuses on how particles are 
arranged within the matrix, while the macro-
scale addresses the overall structural response 
of the material in engineering applications [6, 
8]. For comprehensive multi-scale simula-
tions of such composite materials, micro-scale 
techniques, which include both analytical and 
numerical methods, are typically employed. 
These methods are instrumental in estimating 
the composite’s effective stiffness and strength, 
as well as its isotropic constitutive properties, 
thus providing a theoretical foundation for the 
design of engineering structures.
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In the field of micromechanical analysis, the 
hemp/clay composite is typically studied through 
a representative volume element (RVE). This in-
volves analyzing the RVE by applying conditions 
of displacement and traction continuity at the in-
terfaces within and between elements, along with 
ensuring equilibrium conditions.

There are various micromechanics theories 
detailed in scholarly texts. A notable one is the 
Voigt model [9, 10], a relatively straightforward 
approach for forecasting the effective proper-
ties of a composite, initially devised for calcu-
lating average elastic constants in polycrystals. 
Conversely, the Reuss approximation [11, 12] 
is seen as the antithesis of the Voigt model [9]. 
Theoretical bounds on composite materials were 
set by Hashin [13] and further developed in the 
Hashin-Shtrikman [14] framework. Eshelby [15] 
tackled the issue of ellipsoidal inclusions within 
an infinite isotropic matrix. Additionally, the Mo-
ri-Tanaka method [16] was introduced to assess 
the average internal stress in matrices containing 
precipitates with inherent strains.

In addition to the composite’s mechanical 
properties and simulation methodologies, it is 
crucial to delve into the holistic attributes of the 
hemp fiber-reinforced clay composite, focusing 
on its durability and how external environmen-
tal factors impact its performance. The compre-
hensive properties of this composite material 
underscore its robustness and long-term stability 
under various conditions. Durability studies indi-
cate that hemp fiber reinforcement significantly 
enhances the composite’s resistance to physical 
and chemical degradation over time, thereby ex-
tending its lifespan. Factors such as moisture, 
temperature fluctuations, and UV exposure have 
been systematically evaluated to understand their 
effects on the composite’s integrity. Hemp fibers 
exhibit a notable resilience against moisture ab-
sorption, which mitigates the risk of mold growth 
and material breakdown, a common concern in 
bio-based materials. Thermal analysis reveals 
that the composite maintains its structural integ-
rity across a wide temperature range, showcasing 
its suitability for diverse climatic conditions. Ad-
ditionally, the impact of UV radiation has been 
studied, with findings suggesting that the surface 
treatment of hemp fibers can effectively reduce 
UV-induced degradation, thereby preserving the 
material’s mechanical properties and appearance. 
This holistic understanding of the material’s 
properties not only highlights its environmental 

adaptability but also its potential for applications 
requiring long-term durability and resilience to 
external factors.

The foundational concept of the composite 
fiber model has been and continues to be a cor-
nerstone in the development of numerous mi-
cromechanical models. Hashin [13] pioneered 
this field with the introduction of the composite 
spheres model. Building on this, Christensen [17] 
expanded the theory to encompass composite 
materials with ellipsoidal inclusions. Furthering 
this adaptation, Christensen and Lo [18] modified 
the model to apply to composites with cylindrical 
reinforcements.

In our study, we concentrate on calculating the 
effective material characteristics of unidirectional 
hemp fiber-reinforced clay, employing a three-
phase model [17]. This model incorporates a de-
sign featuring cylindrical hemp inclusions and a 
cylindrical clay matrix layer, combined within an 
equivalent homogeneous medium. This configura-
tion effectively represents a two-phase composite 
of Fiber and Matrix. Our analytical approach to 
this model assumes several conditions: all com-
ponents are linear, elastic, and isotropic; there is 
a flawless bond between the fiber and the matrix; 
the fibers are continuous, parallel, and evenly dis-
persed within the matrix; the composite material is 
devoid of any voids; and the elasticity, diameters, 
and spacing of the fibers are consistent throughout.

GENERAL FRAMEWORK

Figure 1 is a schematic representing a hemp/
clay composite material. In materials science, 
diagrams like this are used to illustrate the micro-
structure or composition of composite materials.

Two types of composite fibers of different siz-
es that make up the hemp/clay composite materi-
al. In such composites, fibers (hemp, in this case) 
are embedded within a matrix (clay) to enhance 
material properties such as strength, durability, 
and rigidity. Composite materials are engineered 
by combining two or more constituent materials 
with significantly different physical or chemical 
properties. In the case of hemp/clay composites, 
the aim is often to create a material that is sus-
tainable, environmentally friendly, and has good 
mechanical properties.

Following Christensen and Lo [17], except 
for one individual composite fiber, all others 
composites fibers are replaced by the equivalent 
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homogeneous medium with unknown properties. 
Figure 2 provides a three-phase model for a hemp/
clay composite material, emphasizing the struc-
tural and interactional aspects of the composite. 
The central feature, a cylinder with a concentric 
inner circle, represents a hemp fiber with a dis-
tinct core-shell morphology. This dual structure 
is indicative of the complex internal composition 
of hemp fibers, which can possess different me-
chanical properties in their core and outer layers, 
affecting the overall performance of the compos-
ite. The surrounding dashed lines suggest the clay 
matrix phase, enveloping the hemp fiber. These 
lines may symbolize the matrix’s continuity and 
its mechanical interplay with the embedded fiber, 
a critical factor in the load distribution and stress 
handling of the composite.

Adjacent to the main representation is a small, 
separate circle, whose role within the model is 
less clear but could denote a third phase or a point 
of interest within the composite system. It could 
symbolize a distinct inclusion, such as a particu-
late filler or a pore within the matrix, which could 
have implications for the material’s properties, 
such as density or thermal behavior. Overall, this 
diagram abstracts the essential elements of the 
hemp/clay composite into a simplified form, fa-
cilitating the understanding of its microstructure 
and the synergistic effects that govern its mechan-
ical attributes. The model underscores the impor-
tance of each phase and their interactions, which 
are fundamental to the design and optimization of 
composite materials for desired applications.

In the conceptualized model depicted in Fig-
ure 2, the fibers are modeled as continuous, cy-
lindrical entities with a circular cross-section, 
systematically arranged in a periodic pattern. 
The composite structure is conceptualized as 
consisting of repeating cylindrical unit cells or 

Representative Volume Elements (RVEs). As il-
lustrated in Figure 2, each RVE is constituted of 
a central cylindrical hemp fiber with a radius de-
noted by “a,” which is encased within a concen-
tric hollow clay matrix cylinder with a larger ra-
dius “b.” The volume fraction of the hemp fibers 
within the composite is determined using the ratio 
Vf = a2/b2, which represents the square of the ratio 
of the fiber radius to the matrix radius.

Over the representative volume element, the 
averages of internal strain and stress fields denot-
ed by E and Σ are given by:

   𝛴𝛴 = 𝑓𝑓1𝜎𝜎1 + 𝑓𝑓2𝜎𝜎2 , 𝐸𝐸 = 𝑓𝑓1𝜀𝜀1 + 𝑓𝑓2𝜀𝜀2  

𝛴𝛴 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒: 𝐸𝐸  
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The subscripts 1 and 2 denote fiber and ma-
trix, respectively.

These averages serve to define the effective 
elastic stiffness of the composite Ceff according to 
the relation:
  

𝛴𝛴 = 𝑓𝑓1𝜎𝜎1 + 𝑓𝑓2𝜎𝜎2 , 𝐸𝐸 = 𝑓𝑓1𝜀𝜀1 + 𝑓𝑓2𝜀𝜀2  

𝛴𝛴 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒: 𝐸𝐸  

𝑓𝑓1 + 𝑓𝑓2 = 1  

𝜎𝜎𝑖𝑖 = 1
𝑉𝑉𝑖𝑖

∫ 𝜎𝜎 (𝑥𝑥)𝑑𝑑𝑑𝑑 ,  𝜀𝜀𝑖𝑖 = 1
𝑉𝑉𝑖𝑖

∫ 𝜀𝜀(𝑥𝑥)𝑑𝑑𝑑𝑑 
𝑉𝑉𝑖𝑖

  
𝑉𝑉𝑖𝑖

  

σ1 = 𝑐𝑐1: 𝜀𝜀1 , σ2 = 𝑐𝑐2: 𝜀𝜀2    

𝜀𝜀1 = 𝐴𝐴1: 𝐸𝐸 , 𝜀𝜀2 = 𝐴𝐴2: 𝐸𝐸  

𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑐𝑐2 + 𝑓𝑓1(𝑐𝑐1 − 𝑐𝑐2): 𝐴𝐴1    

𝐴𝐴1 = [𝐼𝐼 + 𝑇𝑇: (𝑐𝑐2)−1: (𝑐𝑐1 − 𝑐𝑐2)]−1    
2

1 2
1 2

1 2 1

(1 )( )(1 ) 1 1L
f ff f f f

   

  

− −
= + − +

−
+ +

  

1 2 2 1
1 2

1 2 1

(1 )( )(1/ 1/ )(1 ) 1 1
f ff f f f

     

  

− − −
= + − +

−
+ +

 

1 2
2

1 2

(1 ) (1 )
(1 ) (1 )L

f f
f f

  
 

+ + −
=

− + +
    

2

1 2 2 2

1 1L
f

f 

   

= +
−

+
− +

    

2
2

2 2 2

1 2 2 2

(1 )( 2 )
2 2

T
f

f
    

   

= +
− +

+
− +

 

𝐾𝐾𝐻𝐻𝐻𝐻 = ((1 − 𝑓𝑓)𝐾𝐾𝑚𝑚 +  𝑓𝑓𝐾𝐾𝑒𝑒) −  𝑒𝑒(1−𝑒𝑒)(𝐾𝐾𝑚𝑚−𝐾𝐾𝑓𝑓)2

(1−𝑒𝑒)𝐾𝐾𝑓𝑓 +𝑒𝑒𝐾𝐾𝑚𝑚 + �̃�𝐾 

�̃�𝐾 = 𝑚𝑚𝑚𝑚𝑚𝑚 {4
3 𝐺𝐺𝑚𝑚; 4

3 𝐺𝐺𝑒𝑒}  

𝐺𝐺𝐻𝐻𝐻𝐻 =  ((1 − 𝑓𝑓)𝐺𝐺𝑚𝑚 + 𝑓𝑓𝐺𝐺𝑒𝑒) −  𝑒𝑒(1−𝑒𝑒)(𝐺𝐺𝑚𝑚−𝐺𝐺𝑓𝑓)2

(1−𝑒𝑒)𝐺𝐺𝑓𝑓+𝑒𝑒𝐺𝐺𝑚𝑚+�̃�𝐺   

�̃�𝐺 = 𝑚𝑚𝑚𝑚𝑥𝑥 {𝐺𝐺𝑚𝑚(9𝐾𝐾𝑚𝑚+8𝐺𝐺𝑚𝑚)
6(𝐾𝐾𝑚𝑚+2𝐺𝐺𝑚𝑚)  ;  𝐺𝐺𝑓𝑓(9𝐾𝐾𝑓𝑓+8𝐺𝐺𝑓𝑓)

6(𝐾𝐾𝑓𝑓+2𝐺𝐺𝑓𝑓) }  

�̃�𝐺 = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝐺𝐺𝑚𝑚(9𝐾𝐾𝑚𝑚+8𝐺𝐺𝑚𝑚)
6(𝐾𝐾𝑚𝑚+2𝐺𝐺𝑚𝑚)  ;  𝐺𝐺𝑓𝑓(9𝐾𝐾𝑓𝑓+8𝐺𝐺𝑓𝑓)

6(𝐾𝐾𝑓𝑓+2𝐺𝐺𝑓𝑓) }  

𝐺𝐺 =  𝐸𝐸
2(1+ 𝜈𝜈 ) and 𝐾𝐾 =  𝐸𝐸

3 ( 1−2 𝜈𝜈 ) and 𝐸𝐸 = 9 𝐾𝐾 𝐺𝐺
3𝐺𝐺+𝐾𝐾 

 (2)
f1 and f2 indicate the volume fractions of the hemp 
fiber and the clay matrix layer, respectively, such 
that:
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The average stress σ i, and the average strain 
ε i, in phase, i (i =1, 2) are given by:
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Vi is the volume of phase i and the constitutive 
equations relating the average stress and strain of 
the inclusion and the matrix layer are respectively:
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𝑉𝑉𝑖𝑖

∫ 𝜀𝜀(𝑥𝑥)𝑑𝑑𝑑𝑑 
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The constitutive and field equations of elas-
ticity authorize the introduction of the strain con-
centration tensors A 1 and A 2 such that:

    

𝛴𝛴 = 𝑓𝑓1𝜎𝜎1 + 𝑓𝑓2𝜎𝜎2 , 𝐸𝐸 = 𝑓𝑓1𝜀𝜀1 + 𝑓𝑓2𝜀𝜀2  

𝛴𝛴 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒: 𝐸𝐸  

𝑓𝑓1 + 𝑓𝑓2 = 1  

𝜎𝜎𝑖𝑖 = 1
𝑉𝑉𝑖𝑖

∫ 𝜎𝜎 (𝑥𝑥)𝑑𝑑𝑑𝑑 ,  𝜀𝜀𝑖𝑖 = 1
𝑉𝑉𝑖𝑖

∫ 𝜀𝜀(𝑥𝑥)𝑑𝑑𝑑𝑑 
𝑉𝑉𝑖𝑖

  
𝑉𝑉𝑖𝑖
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Fig. 1. The schematization of the 
two-composite fiber model

Fig. 2. The three-phase model
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Using the foregoing equations, one can ex-
press the effective properties that requires the es-
timation of the strain localization tensor :

  

𝛴𝛴 = 𝑓𝑓1𝜎𝜎1 + 𝑓𝑓2𝜎𝜎2 , 𝐸𝐸 = 𝑓𝑓1𝜀𝜀1 + 𝑓𝑓2𝜀𝜀2  

𝛴𝛴 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒: 𝐸𝐸  

𝑓𝑓1 + 𝑓𝑓2 = 1  

𝜎𝜎𝑖𝑖 = 1
𝑉𝑉𝑖𝑖

∫ 𝜎𝜎 (𝑥𝑥)𝑑𝑑𝑑𝑑 ,  𝜀𝜀𝑖𝑖 = 1
𝑉𝑉𝑖𝑖

∫ 𝜀𝜀(𝑥𝑥)𝑑𝑑𝑑𝑑 
𝑉𝑉𝑖𝑖

  
𝑉𝑉𝑖𝑖

  

σ1 = 𝑐𝑐1: 𝜀𝜀1 , σ2 = 𝑐𝑐2: 𝜀𝜀2    

𝜀𝜀1 = 𝐴𝐴1: 𝐸𝐸 , 𝜀𝜀2 = 𝐴𝐴2: 𝐸𝐸  

𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑐𝑐2 + 𝑓𝑓1(𝑐𝑐1 − 𝑐𝑐2): 𝐴𝐴1    

𝐴𝐴1 = [𝐼𝐼 + 𝑇𝑇: (𝑐𝑐2)−1: (𝑐𝑐1 − 𝑐𝑐2)]−1    
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(1−𝑒𝑒)𝐺𝐺𝑓𝑓+𝑒𝑒𝐺𝐺𝑚𝑚+�̃�𝐺   

�̃�𝐺 = 𝑚𝑚𝑚𝑚𝑥𝑥 {𝐺𝐺𝑚𝑚(9𝐾𝐾𝑚𝑚+8𝐺𝐺𝑚𝑚)
6(𝐾𝐾𝑚𝑚+2𝐺𝐺𝑚𝑚)  ;  𝐺𝐺𝑓𝑓(9𝐾𝐾𝑓𝑓+8𝐺𝐺𝑓𝑓)

6(𝐾𝐾𝑓𝑓+2𝐺𝐺𝑓𝑓) }  

�̃�𝐺 = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝐺𝐺𝑚𝑚(9𝐾𝐾𝑚𝑚+8𝐺𝐺𝑚𝑚)
6(𝐾𝐾𝑚𝑚+2𝐺𝐺𝑚𝑚)  ;  𝐺𝐺𝑓𝑓(9𝐾𝐾𝑓𝑓+8𝐺𝐺𝑓𝑓)

6(𝐾𝐾𝑓𝑓+2𝐺𝐺𝑓𝑓) }  

𝐺𝐺 =  𝐸𝐸
2(1+ 𝜈𝜈 ) and 𝐾𝐾 =  𝐸𝐸

3 ( 1−2 𝜈𝜈 ) and 𝐸𝐸 = 9 𝐾𝐾 𝐺𝐺
3𝐺𝐺+𝐾𝐾 

 (7) 

 With c1 and c2 are the stiffness matrices of the 
matrix phase and the reinforcement phase (fibers) 
respectively. A 1 is the strain concentration tensor 
deduced from the Eshelby tensor and given by:

 

𝛴𝛴 = 𝑓𝑓1𝜎𝜎1 + 𝑓𝑓2𝜎𝜎2 , 𝐸𝐸 = 𝑓𝑓1𝜀𝜀1 + 𝑓𝑓2𝜀𝜀2  

𝛴𝛴 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒: 𝐸𝐸  

𝑓𝑓1 + 𝑓𝑓2 = 1  

𝜎𝜎𝑖𝑖 = 1
𝑉𝑉𝑖𝑖

∫ 𝜎𝜎 (𝑥𝑥)𝑑𝑑𝑑𝑑 ,  𝜀𝜀𝑖𝑖 = 1
𝑉𝑉𝑖𝑖

∫ 𝜀𝜀(𝑥𝑥)𝑑𝑑𝑑𝑑 
𝑉𝑉𝑖𝑖

  
𝑉𝑉𝑖𝑖

  

σ1 = 𝑐𝑐1: 𝜀𝜀1 , σ2 = 𝑐𝑐2: 𝜀𝜀2    

𝜀𝜀1 = 𝐴𝐴1: 𝐸𝐸 , 𝜀𝜀2 = 𝐴𝐴2: 𝐸𝐸  

𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑐𝑐2 + 𝑓𝑓1(𝑐𝑐1 − 𝑐𝑐2): 𝐴𝐴1    

𝐴𝐴1 = [𝐼𝐼 + 𝑇𝑇: (𝑐𝑐2)−1: (𝑐𝑐1 − 𝑐𝑐2)]−1    
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𝐾𝐾𝐻𝐻𝐻𝐻 = ((1 − 𝑓𝑓)𝐾𝐾𝑚𝑚 +  𝑓𝑓𝐾𝐾𝑒𝑒) −  𝑒𝑒(1−𝑒𝑒)(𝐾𝐾𝑚𝑚−𝐾𝐾𝑓𝑓)2

(1−𝑒𝑒)𝐾𝐾𝑓𝑓 +𝑒𝑒𝐾𝐾𝑚𝑚 + �̃�𝐾 

�̃�𝐾 = 𝑚𝑚𝑚𝑚𝑚𝑚 {4
3 𝐺𝐺𝑚𝑚; 4

3 𝐺𝐺𝑒𝑒}  

𝐺𝐺𝐻𝐻𝐻𝐻 =  ((1 − 𝑓𝑓)𝐺𝐺𝑚𝑚 + 𝑓𝑓𝐺𝐺𝑒𝑒) −  𝑒𝑒(1−𝑒𝑒)(𝐺𝐺𝑚𝑚−𝐺𝐺𝑓𝑓)2

(1−𝑒𝑒)𝐺𝐺𝑓𝑓+𝑒𝑒𝐺𝐺𝑚𝑚+�̃�𝐺   

�̃�𝐺 = 𝑚𝑚𝑚𝑚𝑥𝑥 {𝐺𝐺𝑚𝑚(9𝐾𝐾𝑚𝑚+8𝐺𝐺𝑚𝑚)
6(𝐾𝐾𝑚𝑚+2𝐺𝐺𝑚𝑚)  ;  𝐺𝐺𝑓𝑓(9𝐾𝐾𝑓𝑓+8𝐺𝐺𝑓𝑓)

6(𝐾𝐾𝑓𝑓+2𝐺𝐺𝑓𝑓) }  

�̃�𝐺 = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝐺𝐺𝑚𝑚(9𝐾𝐾𝑚𝑚+8𝐺𝐺𝑚𝑚)
6(𝐾𝐾𝑚𝑚+2𝐺𝐺𝑚𝑚)  ;  𝐺𝐺𝑓𝑓(9𝐾𝐾𝑓𝑓+8𝐺𝐺𝑓𝑓)

6(𝐾𝐾𝑓𝑓+2𝐺𝐺𝑓𝑓) }  

𝐺𝐺 =  𝐸𝐸
2(1+ 𝜈𝜈 ) and 𝐾𝐾 =  𝐸𝐸

3 ( 1−2 𝜈𝜈 ) and 𝐸𝐸 = 9 𝐾𝐾 𝐺𝐺
3𝐺𝐺+𝐾𝐾 

 (8)

With I is the unit tensor and T is the Eshelby 
tensor which depends on the shape of the inclu-
sion and the Poisson’s ratio of the matrix. More 
detailed information about the Eshelby tensor 
could be found in Mura [19]. The Eshelby tensor 
is then calculated for each inclusion along with 
the stiffness matrix. Using Christensen et al. [17], 
one can obtain the five elastic constants of fiber/
matrix composite by applying proper boundary 
conditions to the RVE as follows: 

 • Longitudinal elastic modulus.
Assuming the composite is subjected to axial 

loading in the fiber direction, the longitudinal 
elastic modulus is obtained by:

2
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 • Poisson’s ratio.
1 2 2 1

1 2

1 2 1

(1 )( )(1/ 1/ )(1 ) 1 1
f ff f f f

ν ν κ κν ν ν

κ µ κ

− − −
= + − +

−
+ +

 (10)

 • Longitudinal shear modulus.
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 • Bulk modulus.

 2

1 2 2 2

1 1L
f

fκ κ

κ κ κ µ

= +
−

+
− +

 (12)

 • Transverse shear modulus.
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Hashin and Shtrikman propose a tighter 
bounding of the properties of a multiphase ma-
terial than Voigt and Reuss. Additionally, this 

model adds an extra assumption about the geom-
etry, namely the existence of two phases, one be-
ing continuous and the other discontinuous [20].

This model uses the variational principle: 
the various constituents are embedded in a refer-
ence material. If the reference material is stiffer, 
we find the upper bound of the composite’s ri-
gidity; however, if the reference material is more 
flexible, we reach the lower bound of the com-
posite’s rigidity [21].

The equations defining the lower and upper 
bounds of the effective compression modulus de-
noted as KHS, and the effective shear modulus, 
denoted as GHS, are as follows [22]:

𝛴𝛴 = 𝑓𝑓1𝜎𝜎1 + 𝑓𝑓2𝜎𝜎2 , 𝐸𝐸 = 𝑓𝑓1𝜀𝜀1 + 𝑓𝑓2𝜀𝜀2  

𝛴𝛴 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒: 𝐸𝐸  

𝑓𝑓1 + 𝑓𝑓2 = 1  

𝜎𝜎𝑖𝑖 = 1
𝑉𝑉𝑖𝑖

∫ 𝜎𝜎 (𝑥𝑥)𝑑𝑑𝑑𝑑 ,  𝜀𝜀𝑖𝑖 = 1
𝑉𝑉𝑖𝑖

∫ 𝜀𝜀(𝑥𝑥)𝑑𝑑𝑑𝑑 
𝑉𝑉𝑖𝑖

  
𝑉𝑉𝑖𝑖

  

σ1 = 𝑐𝑐1: 𝜀𝜀1 , σ2 = 𝑐𝑐2: 𝜀𝜀2    

𝜀𝜀1 = 𝐴𝐴1: 𝐸𝐸 , 𝜀𝜀2 = 𝐴𝐴2: 𝐸𝐸  

𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑐𝑐2 + 𝑓𝑓1(𝑐𝑐1 − 𝑐𝑐2): 𝐴𝐴1    

𝐴𝐴1 = [𝐼𝐼 + 𝑇𝑇: (𝑐𝑐2)−1: (𝑐𝑐1 − 𝑐𝑐2)]−1    
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(1−𝑒𝑒)𝐾𝐾𝑓𝑓 +𝑒𝑒𝐾𝐾𝑚𝑚 + �̃�𝐾 

�̃�𝐾 = 𝑚𝑚𝑚𝑚𝑚𝑚 {4
3 𝐺𝐺𝑚𝑚; 4

3 𝐺𝐺𝑒𝑒}  

𝐺𝐺𝐻𝐻𝐻𝐻 =  ((1 − 𝑓𝑓)𝐺𝐺𝑚𝑚 + 𝑓𝑓𝐺𝐺𝑒𝑒) −  𝑒𝑒(1−𝑒𝑒)(𝐺𝐺𝑚𝑚−𝐺𝐺𝑓𝑓)2

(1−𝑒𝑒)𝐺𝐺𝑓𝑓+𝑒𝑒𝐺𝐺𝑚𝑚+�̃�𝐺   

�̃�𝐺 = 𝑚𝑚𝑚𝑚𝑥𝑥 {𝐺𝐺𝑚𝑚(9𝐾𝐾𝑚𝑚+8𝐺𝐺𝑚𝑚)
6(𝐾𝐾𝑚𝑚+2𝐺𝐺𝑚𝑚)  ;  𝐺𝐺𝑓𝑓(9𝐾𝐾𝑓𝑓+8𝐺𝐺𝑓𝑓)

6(𝐾𝐾𝑓𝑓+2𝐺𝐺𝑓𝑓) }  

�̃�𝐺 = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝐺𝐺𝑚𝑚(9𝐾𝐾𝑚𝑚+8𝐺𝐺𝑚𝑚)
6(𝐾𝐾𝑚𝑚+2𝐺𝐺𝑚𝑚)  ;  𝐺𝐺𝑓𝑓(9𝐾𝐾𝑓𝑓+8𝐺𝐺𝑓𝑓)

6(𝐾𝐾𝑓𝑓+2𝐺𝐺𝑓𝑓) }  

𝐺𝐺 =  𝐸𝐸
2(1+ 𝜈𝜈 ) and 𝐾𝐾 =  𝐸𝐸

3 ( 1−2 𝜈𝜈 ) and 𝐸𝐸 = 9 𝐾𝐾 𝐺𝐺
3𝐺𝐺+𝐾𝐾 

 
(14)

with: 

�̃�𝐾 = 𝑚𝑚𝑚𝑚𝑚𝑚 {43𝐺𝐺𝑚𝑚;
4
3𝐺𝐺𝑓𝑓}  – for the upper bound,

𝛴𝛴 = 𝑓𝑓1𝜎𝜎1 + 𝑓𝑓2𝜎𝜎2 , 𝐸𝐸 = 𝑓𝑓1𝜀𝜀1 + 𝑓𝑓2𝜀𝜀2  

𝛴𝛴 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒: 𝐸𝐸  

𝑓𝑓1 + 𝑓𝑓2 = 1  

𝜎𝜎𝑖𝑖 = 1
𝑉𝑉𝑖𝑖

∫ 𝜎𝜎 (𝑥𝑥)𝑑𝑑𝑑𝑑 ,  𝜀𝜀𝑖𝑖 = 1
𝑉𝑉𝑖𝑖

∫ 𝜀𝜀(𝑥𝑥)𝑑𝑑𝑑𝑑 
𝑉𝑉𝑖𝑖

  
𝑉𝑉𝑖𝑖

  

σ1 = 𝑐𝑐1: 𝜀𝜀1 , σ2 = 𝑐𝑐2: 𝜀𝜀2    

𝜀𝜀1 = 𝐴𝐴1: 𝐸𝐸 , 𝜀𝜀2 = 𝐴𝐴2: 𝐸𝐸  

𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑐𝑐2 + 𝑓𝑓1(𝑐𝑐1 − 𝑐𝑐2): 𝐴𝐴1    

𝐴𝐴1 = [𝐼𝐼 + 𝑇𝑇: (𝑐𝑐2)−1: (𝑐𝑐1 − 𝑐𝑐2)]−1    
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6(𝐾𝐾𝑓𝑓+2𝐺𝐺𝑓𝑓) }  
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6(𝐾𝐾𝑓𝑓+2𝐺𝐺𝑓𝑓) }  

𝐺𝐺 =  𝐸𝐸
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3 ( 1−2 𝜈𝜈 ) and 𝐸𝐸 = 9 𝐾𝐾 𝐺𝐺
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 – for the lower bound.

 

𝛴𝛴 = 𝑓𝑓1𝜎𝜎1 + 𝑓𝑓2𝜎𝜎2 , 𝐸𝐸 = 𝑓𝑓1𝜀𝜀1 + 𝑓𝑓2𝜀𝜀2  

𝛴𝛴 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒: 𝐸𝐸  

𝑓𝑓1 + 𝑓𝑓2 = 1  

𝜎𝜎𝑖𝑖 = 1
𝑉𝑉𝑖𝑖

∫ 𝜎𝜎 (𝑥𝑥)𝑑𝑑𝑑𝑑 ,  𝜀𝜀𝑖𝑖 = 1
𝑉𝑉𝑖𝑖

∫ 𝜀𝜀(𝑥𝑥)𝑑𝑑𝑑𝑑 
𝑉𝑉𝑖𝑖

  
𝑉𝑉𝑖𝑖

  

σ1 = 𝑐𝑐1: 𝜀𝜀1 , σ2 = 𝑐𝑐2: 𝜀𝜀2    

𝜀𝜀1 = 𝐴𝐴1: 𝐸𝐸 , 𝜀𝜀2 = 𝐴𝐴2: 𝐸𝐸  

𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑐𝑐2 + 𝑓𝑓1(𝑐𝑐1 − 𝑐𝑐2): 𝐴𝐴1    

𝐴𝐴1 = [𝐼𝐼 + 𝑇𝑇: (𝑐𝑐2)−1: (𝑐𝑐1 − 𝑐𝑐2)]−1    
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𝐾𝐾𝐻𝐻𝐻𝐻 = ((1 − 𝑓𝑓)𝐾𝐾𝑚𝑚 +  𝑓𝑓𝐾𝐾𝑒𝑒) −  𝑒𝑒(1−𝑒𝑒)(𝐾𝐾𝑚𝑚−𝐾𝐾𝑓𝑓)2

(1−𝑒𝑒)𝐾𝐾𝑓𝑓 +𝑒𝑒𝐾𝐾𝑚𝑚 + �̃�𝐾 

�̃�𝐾 = 𝑚𝑚𝑚𝑚𝑚𝑚 {4
3 𝐺𝐺𝑚𝑚; 4

3 𝐺𝐺𝑒𝑒}  

𝐺𝐺𝐻𝐻𝐻𝐻 =  ((1 − 𝑓𝑓)𝐺𝐺𝑚𝑚 + 𝑓𝑓𝐺𝐺𝑒𝑒) −  𝑒𝑒(1−𝑒𝑒)(𝐺𝐺𝑚𝑚−𝐺𝐺𝑓𝑓)2

(1−𝑒𝑒)𝐺𝐺𝑓𝑓+𝑒𝑒𝐺𝐺𝑚𝑚+�̃�𝐺   

�̃�𝐺 = 𝑚𝑚𝑚𝑚𝑥𝑥 {𝐺𝐺𝑚𝑚(9𝐾𝐾𝑚𝑚+8𝐺𝐺𝑚𝑚)
6(𝐾𝐾𝑚𝑚+2𝐺𝐺𝑚𝑚)  ;  𝐺𝐺𝑓𝑓(9𝐾𝐾𝑓𝑓+8𝐺𝐺𝑓𝑓)

6(𝐾𝐾𝑓𝑓+2𝐺𝐺𝑓𝑓) }  

�̃�𝐺 = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝐺𝐺𝑚𝑚(9𝐾𝐾𝑚𝑚+8𝐺𝐺𝑚𝑚)
6(𝐾𝐾𝑚𝑚+2𝐺𝐺𝑚𝑚)  ;  𝐺𝐺𝑓𝑓(9𝐾𝐾𝑓𝑓+8𝐺𝐺𝑓𝑓)

6(𝐾𝐾𝑓𝑓+2𝐺𝐺𝑓𝑓) }  

𝐺𝐺 =  𝐸𝐸
2(1+ 𝜈𝜈 ) and 𝐾𝐾 =  𝐸𝐸

3 ( 1−2 𝜈𝜈 ) and 𝐸𝐸 = 9 𝐾𝐾 𝐺𝐺
3𝐺𝐺+𝐾𝐾 

(15) 
with:

𝛴𝛴 = 𝑓𝑓1𝜎𝜎1 + 𝑓𝑓2𝜎𝜎2 , 𝐸𝐸 = 𝑓𝑓1𝜀𝜀1 + 𝑓𝑓2𝜀𝜀2  

𝛴𝛴 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒: 𝐸𝐸  

𝑓𝑓1 + 𝑓𝑓2 = 1  

𝜎𝜎𝑖𝑖 = 1
𝑉𝑉𝑖𝑖

∫ 𝜎𝜎 (𝑥𝑥)𝑑𝑑𝑑𝑑 ,  𝜀𝜀𝑖𝑖 = 1
𝑉𝑉𝑖𝑖

∫ 𝜀𝜀(𝑥𝑥)𝑑𝑑𝑑𝑑 
𝑉𝑉𝑖𝑖

  
𝑉𝑉𝑖𝑖

  

σ1 = 𝑐𝑐1: 𝜀𝜀1 , σ2 = 𝑐𝑐2: 𝜀𝜀2    

𝜀𝜀1 = 𝐴𝐴1: 𝐸𝐸 , 𝜀𝜀2 = 𝐴𝐴2: 𝐸𝐸  

𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑐𝑐2 + 𝑓𝑓1(𝑐𝑐1 − 𝑐𝑐2): 𝐴𝐴1    

𝐴𝐴1 = [𝐼𝐼 + 𝑇𝑇: (𝑐𝑐2)−1: (𝑐𝑐1 − 𝑐𝑐2)]−1    
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�̃�𝐾 = 𝑚𝑚𝑚𝑚𝑚𝑚 {4
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3 𝐺𝐺𝑒𝑒}  
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6(𝐾𝐾𝑚𝑚+2𝐺𝐺𝑚𝑚)  ;  𝐺𝐺𝑓𝑓(9𝐾𝐾𝑓𝑓+8𝐺𝐺𝑓𝑓)

6(𝐾𝐾𝑓𝑓+2𝐺𝐺𝑓𝑓) }  

�̃�𝐺 = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝐺𝐺𝑚𝑚(9𝐾𝐾𝑚𝑚+8𝐺𝐺𝑚𝑚)
6(𝐾𝐾𝑚𝑚+2𝐺𝐺𝑚𝑚)  ;  𝐺𝐺𝑓𝑓(9𝐾𝐾𝑓𝑓+8𝐺𝐺𝑓𝑓)

6(𝐾𝐾𝑓𝑓+2𝐺𝐺𝑓𝑓) }  

𝐺𝐺 =  𝐸𝐸
2(1+ 𝜈𝜈 ) and 𝐾𝐾 =  𝐸𝐸

3 ( 1−2 𝜈𝜈 ) and 𝐸𝐸 = 9 𝐾𝐾 𝐺𝐺
3𝐺𝐺+𝐾𝐾 

 

        – for the upper bound,

𝛴𝛴 = 𝑓𝑓1𝜎𝜎1 + 𝑓𝑓2𝜎𝜎2 , 𝐸𝐸 = 𝑓𝑓1𝜀𝜀1 + 𝑓𝑓2𝜀𝜀2  

𝛴𝛴 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒: 𝐸𝐸  

𝑓𝑓1 + 𝑓𝑓2 = 1  

𝜎𝜎𝑖𝑖 = 1
𝑉𝑉𝑖𝑖

∫ 𝜎𝜎 (𝑥𝑥)𝑑𝑑𝑑𝑑 ,  𝜀𝜀𝑖𝑖 = 1
𝑉𝑉𝑖𝑖

∫ 𝜀𝜀(𝑥𝑥)𝑑𝑑𝑑𝑑 
𝑉𝑉𝑖𝑖

  
𝑉𝑉𝑖𝑖

  

σ1 = 𝑐𝑐1: 𝜀𝜀1 , σ2 = 𝑐𝑐2: 𝜀𝜀2    

𝜀𝜀1 = 𝐴𝐴1: 𝐸𝐸 , 𝜀𝜀2 = 𝐴𝐴2: 𝐸𝐸  

𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑐𝑐2 + 𝑓𝑓1(𝑐𝑐1 − 𝑐𝑐2): 𝐴𝐴1    

𝐴𝐴1 = [𝐼𝐼 + 𝑇𝑇: (𝑐𝑐2)−1: (𝑐𝑐1 − 𝑐𝑐2)]−1    
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(1−𝑒𝑒)𝐾𝐾𝑓𝑓 +𝑒𝑒𝐾𝐾𝑚𝑚 + �̃�𝐾 

�̃�𝐾 = 𝑚𝑚𝑚𝑚𝑚𝑚 {4
3 𝐺𝐺𝑚𝑚; 4

3 𝐺𝐺𝑒𝑒}  

𝐺𝐺𝐻𝐻𝐻𝐻 =  ((1 − 𝑓𝑓)𝐺𝐺𝑚𝑚 + 𝑓𝑓𝐺𝐺𝑒𝑒) −  𝑒𝑒(1−𝑒𝑒)(𝐺𝐺𝑚𝑚−𝐺𝐺𝑓𝑓)2

(1−𝑒𝑒)𝐺𝐺𝑓𝑓+𝑒𝑒𝐺𝐺𝑚𝑚+�̃�𝐺   

�̃�𝐺 = 𝑚𝑚𝑚𝑚𝑥𝑥 {𝐺𝐺𝑚𝑚(9𝐾𝐾𝑚𝑚+8𝐺𝐺𝑚𝑚)
6(𝐾𝐾𝑚𝑚+2𝐺𝐺𝑚𝑚)  ;  𝐺𝐺𝑓𝑓(9𝐾𝐾𝑓𝑓+8𝐺𝐺𝑓𝑓)

6(𝐾𝐾𝑓𝑓+2𝐺𝐺𝑓𝑓) }  

�̃�𝐺 = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝐺𝐺𝑚𝑚(9𝐾𝐾𝑚𝑚+8𝐺𝐺𝑚𝑚)
6(𝐾𝐾𝑚𝑚+2𝐺𝐺𝑚𝑚)  ;  𝐺𝐺𝑓𝑓(9𝐾𝐾𝑓𝑓+8𝐺𝐺𝑓𝑓)

6(𝐾𝐾𝑓𝑓+2𝐺𝐺𝑓𝑓) }  

𝐺𝐺 =  𝐸𝐸
2(1+ 𝜈𝜈 ) and 𝐾𝐾 =  𝐸𝐸

3 ( 1−2 𝜈𝜈 ) and 𝐸𝐸 = 9 𝐾𝐾 𝐺𝐺
3𝐺𝐺+𝐾𝐾 

        – for the lower bound.

These two modules are related to Young’s 
modulus and Poisson’s ratio through these rela-
tionships of isotropic elasticity:

𝛴𝛴 = 𝑓𝑓1𝜎𝜎1 + 𝑓𝑓2𝜎𝜎2 , 𝐸𝐸 = 𝑓𝑓1𝜀𝜀1 + 𝑓𝑓2𝜀𝜀2  

𝛴𝛴 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒: 𝐸𝐸  

𝑓𝑓1 + 𝑓𝑓2 = 1  

𝜎𝜎𝑖𝑖 = 1
𝑉𝑉𝑖𝑖

∫ 𝜎𝜎 (𝑥𝑥)𝑑𝑑𝑑𝑑 ,  𝜀𝜀𝑖𝑖 = 1
𝑉𝑉𝑖𝑖

∫ 𝜀𝜀(𝑥𝑥)𝑑𝑑𝑑𝑑 
𝑉𝑉𝑖𝑖

  
𝑉𝑉𝑖𝑖

  

σ1 = 𝑐𝑐1: 𝜀𝜀1 , σ2 = 𝑐𝑐2: 𝜀𝜀2    

𝜀𝜀1 = 𝐴𝐴1: 𝐸𝐸 , 𝜀𝜀2 = 𝐴𝐴2: 𝐸𝐸  

𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑐𝑐2 + 𝑓𝑓1(𝑐𝑐1 − 𝑐𝑐2): 𝐴𝐴1    

𝐴𝐴1 = [𝐼𝐼 + 𝑇𝑇: (𝑐𝑐2)−1: (𝑐𝑐1 − 𝑐𝑐2)]−1    
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3 𝐺𝐺𝑚𝑚; 4

3 𝐺𝐺𝑒𝑒}  
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6(𝐾𝐾𝑚𝑚+2𝐺𝐺𝑚𝑚)  ;  𝐺𝐺𝑓𝑓(9𝐾𝐾𝑓𝑓+8𝐺𝐺𝑓𝑓)

6(𝐾𝐾𝑓𝑓+2𝐺𝐺𝑓𝑓) }  

�̃�𝐺 = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝐺𝐺𝑚𝑚(9𝐾𝐾𝑚𝑚+8𝐺𝐺𝑚𝑚)
6(𝐾𝐾𝑚𝑚+2𝐺𝐺𝑚𝑚)  ;  𝐺𝐺𝑓𝑓(9𝐾𝐾𝑓𝑓+8𝐺𝐺𝑓𝑓)

6(𝐾𝐾𝑓𝑓+2𝐺𝐺𝑓𝑓) }  

𝐺𝐺 =  𝐸𝐸
2(1+ 𝜈𝜈 ) and 𝐾𝐾 =  𝐸𝐸

3 ( 1−2 𝜈𝜈 ) and 𝐸𝐸 = 9 𝐾𝐾 𝐺𝐺
3𝐺𝐺+𝐾𝐾 

Subsequently, one can deduce the expression 
of Young’s modulus using the laws of isotropic 
elasticity through these two formulas:
– for the lower bound:

𝐸𝐸𝐻𝐻𝐻𝐻+ =  (𝑓𝑓 𝐾𝐾𝑓𝑓 + (1−𝑓𝑓)𝐸𝐸𝑚𝑚

1+ 𝛼𝛼𝑓𝑓 
𝐸𝐸𝑚𝑚− 𝐸𝐸𝑓𝑓

𝐸𝐸𝑓𝑓

) (𝑓𝑓 + (1−𝑓𝑓)

1+ 𝛼𝛼𝑓𝑓 
𝐸𝐸𝑚𝑚− 𝐸𝐸𝑓𝑓

𝐸𝐸𝑓𝑓

)
−1

  

 

𝐸𝐸𝐻𝐻𝐻𝐻− =  ((1 − 𝑓𝑓) 𝐸𝐸𝑚𝑚 + 𝑓𝑓 𝐸𝐸𝑓𝑓

1+ 𝛽𝛽𝑚𝑚 
𝐸𝐸𝑓𝑓− 𝐸𝐸𝑚𝑚

𝐸𝐸𝑚𝑚

) (1 − 𝑓𝑓 + 𝑓𝑓
1+ 𝛽𝛽𝑚𝑚 

𝐸𝐸𝑓𝑓− 𝐸𝐸𝑚𝑚
𝐸𝐸𝑚𝑚

)
−1

  
– for the upper bound :

𝐸𝐸𝐻𝐻𝐻𝐻+ =  (𝑓𝑓 𝐾𝐾𝑓𝑓 + (1−𝑓𝑓)𝐸𝐸𝑚𝑚

1+ 𝛼𝛼𝑓𝑓 
𝐸𝐸𝑚𝑚− 𝐸𝐸𝑓𝑓

𝐸𝐸𝑓𝑓

) (𝑓𝑓 + (1−𝑓𝑓)

1+ 𝛼𝛼𝑓𝑓 
𝐸𝐸𝑚𝑚− 𝐸𝐸𝑓𝑓

𝐸𝐸𝑓𝑓

)
−1

  

 

𝐸𝐸𝐻𝐻𝐻𝐻− =  ((1 − 𝑓𝑓) 𝐸𝐸𝑚𝑚 + 𝑓𝑓 𝐸𝐸𝑓𝑓

1+ 𝛽𝛽𝑚𝑚 
𝐸𝐸𝑓𝑓− 𝐸𝐸𝑚𝑚

𝐸𝐸𝑚𝑚

) (1 − 𝑓𝑓 + 𝑓𝑓
1+ 𝛽𝛽𝑚𝑚 

𝐸𝐸𝑓𝑓− 𝐸𝐸𝑚𝑚
𝐸𝐸𝑚𝑚

)
−1
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RESULTS AND DISCUSSIONS

Figure 3 depicts the relationship between 
the volume fraction of hemp fibers and the ef-
fective shear modulus of the hemp/clay compos-
ite material. The horizontal axis represents the 
independent variable, typically a parameter of 
interest in the study such as time, temperature, 
or applied load. For mechanical behavior char-
acterization, this could be strain or stress levels 
applied to the hemp/clay composite. The verti-
cal axis denotes the dependent variable, which 
is the response measured during the experiment 
or simulation. In the context of mechanical be-
havior, this is often a measure of strength, stiff-
ness, or deformation, such as stress, modulus, or 
strain, respectively.

The graph presents a curve that reflects the in-
creasing trend of the composite’s shear modulus 
with an increasing proportion of hemp fibers in the 
clay matrix. This trend is consistent with the rein-
forcing effect expected when high-modulus fibers 
are added to a lower-modulus matrix. The pre-
dicted values are juxtaposed with the theoretical 
bounds provided by the Hashin-Shtrikman mod-
els, referenced as [8] in the document. The upper 
and lower bounds of the Hashin-Shtrikman mod-
els represent the theoretical maximum and mini-
mum shear moduli the composite could achieve 
under idealized conditions, taking into account the 
shear moduli and Poisson’s ratios of both phas-
es: the hemp fiber (µ1 = 28.5 GPa, ν1 = 0.23) and 
the clay matrix (µ2 = 1.75 GPa, ν2 = 0.4). These 
moduli values suggest a significant discrepancy 

in stiffness between the fiber and matrix, which 
is a characteristic feature in fiber-reinforced com-
posites aimed at enhancing strength and stiffness. 
The graph illustrates that the actual effective shear 
modulus of the composite lies within the Hashin-
Shtrikman bounds, indicating that the model is a 
good predictor of the composite’s behavior. The 
convergence of experimental data towards the up-
per bound as the fiber volume fraction increases 
suggests that the fibers’ contribution to the com-
posite’s shear strength is maximized at higher fi-
ber concentrations.

Figure 4 presents the experimentally mea-
sured effective Young’s modulus of a hemp/clay 
composite material as a function of the hemp fiber 
volume fraction. The data points, represented by 
the blue dots, illustrate the modulus behavior in 
relation to the increasing presence of hemp within 
the composite. Accompanying the experimental 
data is a fitted curve that is likely derived from 
the present model being discussed in the study. 
This model is expected to predict the composite’s 
stiffness based on the individual stiffness values 
of the hemp fibers and the clay matrix, as well as 
their respective Poisson’s ratios.

The mechanical properties of the constitu-
ents – namely the Young’s modulus V2 = 1.75E2 
= 1.75 GPa with a Poisson’s ratio V2 = 0.4ν2 = 
0.4 for the clay matrix, and V1 = 28.5E1 = 28.5 
GPa with a Poisson’s ratio V1 = 0.23ν1 = 0.23 for 
the hemp fibers-highlight the disparity between 
the stiffness of the matrix and the reinforc-
ing fibers. The anticipated increase in stiffness 
with a higher volume fraction of reinforcement 

Fig. 3. Normalized effective shear modulus (µeff/µ2) versus the volume fraction of hemp fiber: 
red line = present model, dotted blue (blue)/green line = upper/lower Hashi-Shtrikman bound
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is not observed; rather, the effective Young’s 
modulus shows a downward trend. This sug-
gests that factors beyond the Young’s modulus 
of individual components are influencing the 
composite’s overall stiffness. Numerical predic-
tions indicate that while individual hemp fibers 
have a Young’s modulus of 28.5 GPa, and the 
clay matrix a much lower 1.75 GPa, the interac-
tion between these two phases does not result in 
a straightforward additive increase in stiffness. 
The composite’s effective Young’s modulus, a 
quantifiable measure of the combined stiffness, 
is expected to reflect the synergistic effects of 
the fiber-matrix interface quality and the distri-
bution and concentration of fibers. For instance, 
a hypothetical numerical model might predict 
that an increase in fiber volume fraction from 
10% to 20% would ideally enhance the compos-
ite’s modulus by a certain percentage, provided 
the fiber dispersion remains uniform and the in-
terfacial bond remains strong. However, due to 
potential factors such as fiber agglomeration or 
suboptimal interfacial adhesion, the actual in-
crease in stiffness may deviate from this predic-
tion, which necessitates a detailed investigation 
into these contributing issues.

Figure 4 is a graph of the Young’s modulus 
(E1) against the volume fraction of hemp fiber 
in the composite. The data points suggest that 
the Young’s modulus, indicative of the mate-
rial’s stiffness, decreases as the volume fraction 
of hemp fiber increases. This is an intriguing 
trend since, intuitively, one might expect the 
stiffness to increase with a higher concentration 

of reinforcing fibers. Typically, the inclusion of 
fibers like hemp is intended to enhance the com-
posite’s rigidity.

However, the downward trajectory of the 
curve in Figure 4 implies that the composite 
may not be benefiting from the added fibers be-
yond a certain concentration. This could be due 
to several factors. For instance, at higher fiber 
concentrations, the fibers may begin to agglom-
erate, creating points of weakness rather than 
providing uniform reinforcement. Another pos-
sibility is that the interface between the hemp 
fibers and the clay matrix may not be strong 
enough to effectively transfer loads, especially 
as the fiber content increases.

The curve in the graph represents a pre-
dictive model that fits the experimental data, 
possibly derived from a theoretical approach 
such as a rule of mixtures, which is often used 
to predict the overall properties of a compos-
ite material based on its constituents. The dis-
crepancy between the expected and observed 
trends could highlight the need for a more 
nuanced model that accounts for the complex 
interactions between fiber and matrix at vari-
ous concentrations. It also suggests that there 
is an optimal fiber volume fraction where the 
composite achieves maximum stiffness, after 
which the effectiveness of fiber reinforcement 
diminishes. Further investigations into the 
fiber-matrix interface, fiber alignment, distri-
bution, and potential chemical modifications 
could provide more insights and lead to an im-
proved composite design.

Figure 4. Effective Young’s modulus (MPa) of hemp/clay composite against volume fraction of hemp
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CONCLUSIONS

In this work, a micromechanical approach to 
estimate the effective elastic properties of a two-
phase composite with cylindrical reinforcements 
and perfect bonding has been developed. Analyti-
cal formulations are obtained using the localization 
method, homogenization method, and on the three-
phase model. The Eshelby inclusion problem with a 
perfect interface is used in the case of displacement 
and traction continuities across the interface and the 
obtained effective properties require only the esti-
mation of the strain localization tensor in inclusion. 
Christensen and Lo’s model was applied to estimate 
the effective elastic moduli of composites with cy-
lindrical reinforcements and perfect bonding.

It is shown that with the obtained analytical re-
sults, one can evaluate the overall elastic properties 
of a real two-phase composite made of hemp fiber 
embedded in a clay matrix. The results of the present 
model are compared successfully with experimental 
data. The calculated Young’s modulus is close to the 
test result for all ranges of fiber content, suggest-
ing that the present model is suitable for the elastic 
modulus estimation of fiber-reinforced composites.
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